Examples of Early Phase Implementation of PAT Tools: Meeting Short Term Goals While Setting the Stage for Long-Term Process Understanding and Control

Terry Connolly
Pfizer PharmaTherapeutics
Pearl River, NY
Wyeth Research 2001-2009

• Since 2001, Wyeth has pursued a productivity model that had as its objective the submission of two New Drug Applications (NDAs) for New Molecular Entities every year

• To support this goal, Wyeth Research increased the number of compounds entering clinical development each year

• The annual Wyeth Research goals became
 – 13 compounds enter Phase 0
 – File 10 INDs
Chemical Development: Timing and Deliveries

- Pre-development Track Declaration
- Lead Selection
- Development Track Declaration
- IND/FIH

- Pre-Selection (Discovery)
- Pre-Development
- Ph 0
- Ph I

- 5 g (Multiple Leads)
- 25 g (Single Lead)
- IDM
- RSE Mtg
- RSE (~5 g)
- LLM
- LLM
- LLM
- API Tech Review
- ~500 g
- 2-10 kg

IDM: Initial Discovery Meeting
RSE: Rapid Synthesis Evaluation
LLM: Lessons Learned Meeting
Chemical Development: Challenges and Drivers

- More reactions in shorter time
 - Parallel reaction screening
- Learn more from each reaction
 - Heat flow – Qr and Tr-Tj
 - in-situ FTIR
Enolization-Azidation Sequence

Initial Procedure:
1. 1 equiv KHMDS (0.5 M in toluene) added to substrate in 6.5 vol THF at -65 °C
2. Trisyl Azide in 4 vol THF added to cold solution
3. Reaction quenched with acetic acid and water, warmed to room temperature

Scale-Up Issues:
1. Product is an oil, necessary to telescope to amine
2. Use and generation of azides – process safety issue?
3. Low temperature (min -50 °C cooling fluid on reactor)
4. Low throughput (50 L Vmax on reactor)
Azidation – Process Safety Data for Trisylazide

Exotherm starts at 120 °C, Max temperature rise 150 °C/min, Max pressure rise 21 bar/min
Azidation – Process Safety Data Azido int.

Sample ID: L34849-14, 2 mL viscous oil mixture of WAY-121609
TSU1-200610251.dat

Shallow exotherm at ~140 °C
Target Kilolab Vessel
Azidation: Process Development

Process Improvements:

- KHMDS sourced as 0.91 M solution in THF (vs 0.5 M in toluene)
- Trisyl Azide sourced as 30 wt% solution in toluene
- Reduced solvent required to dissolve substrate from 6.5 to 2.5 vol
- Overall throughput improved from 2.8 kg input to 5 kg

<table>
<thead>
<tr>
<th>Entry</th>
<th>Temperature (°C)</th>
<th>Base Addition Time (min)</th>
<th>Enolate Hold Time (min)</th>
<th>Trisylazide solution (°C)</th>
<th>Hold Time</th>
<th>Assay Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-78</td>
<td>30</td>
<td>45</td>
<td>-78</td>
<td>2</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>-50</td>
<td>10</td>
<td>45</td>
<td>-78</td>
<td>2</td>
<td>87</td>
</tr>
<tr>
<td>3</td>
<td>-30</td>
<td>10</td>
<td>40</td>
<td>-78</td>
<td>2</td>
<td>86</td>
</tr>
<tr>
<td>4</td>
<td>-78</td>
<td>2</td>
<td>30</td>
<td>-78</td>
<td>60</td>
<td>97</td>
</tr>
<tr>
<td>5</td>
<td>-40</td>
<td>10</td>
<td>45</td>
<td>-78</td>
<td>2</td>
<td>92</td>
</tr>
<tr>
<td>6</td>
<td>-40</td>
<td>30</td>
<td>40</td>
<td>25</td>
<td>75*</td>
<td>98</td>
</tr>
<tr>
<td>7</td>
<td>-10</td>
<td>5</td>
<td>30</td>
<td>25</td>
<td>15</td>
<td>94</td>
</tr>
</tbody>
</table>
Azidation: ReactIR™ Monitoring

IR Spectral Region of Interest

- Starting material carbonyl stretch: 1775-1825 cm\(^{-1}\)
- Enolate carbonyl stretch: 1715-1740 cm\(^{-1}\)
- Azide stretch: 2090-2150 cm\(^{-1}\)
Azidation: ReactIR™ Monitoring

- ReactIR Profile at -45 °C for KHMDS and Trislyazide Additions

![Graph showing ReactIR Profile at -45 °C for KHMDS and Trislyazide Additions]

- KHMDS addition
- Trisylazide addition

Legend:
- Peak 1 1775-1825 cm⁻¹
- Peak 2 1715-1740 cm⁻¹
- Peak 3 2090-2150 cm⁻¹
Azidation: ReactIR™ Monitoring

Stability: Enolate held at -45 °C for 4 h

- Intensity of enolate signal decreased 18% over 4 h
- Half life ~ 12 h @ -45 °C
Azidation: ReactIR™ Monitoring

ReactIR Profile at -10 °C for KHMDS and Trisylazide Additions

Half life ~ 3h @ 10 °C
Enolization – Azidation Performance

- **14 kg of KHMDS (20 wt% in THF) added over 45 minutes**
 - Reactor temp: -47 to -42 °C
 - Jacket temp: -50 to -45 °C

- **17 kg trisylazide (30 wt% in toluene) added over 1 h**
 - Reactor temp: -46 to -40 °C
 - Jacket temp: -55 to -50 °C
Telescoped Azidation - Reduction

Telescoping through hydrogenation

- Run reaction at -40 °C
- Sulfinic acid byproduct removed with basic washes (0.25 M K$_3$PO$_4$)
- Solvent replaced with ethanol
- Hydrogenation with 10% Pd/C 50% wet catalyst
Kilo-lab Performance

![Chemical structures]

<table>
<thead>
<tr>
<th>Step</th>
<th>Lab demo</th>
<th>Kilolab</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-6 (KHMDS-ArSO₂N₃⁻H₂))</td>
<td>168.5 g (74.9%) A%: 98.3%, LSI 1.6%</td>
<td>3.7, 3.2, 4.2 kg (62.7%) A%: 98.5%, LSI 1.5%</td>
</tr>
</tbody>
</table>
Summary

- *In-situ* FTIR used in combination with parameter ranging experiments to define preferred operating range for low-temperature enolization-azidation sequence
- Process shown to be stable at operating temperatures between -40 to -50 °C
- *In-situ* FTIR also highlighted that trisylazide did not accumulate during addition
Acknowledgements

SR&D

Anita Chan
Zhixian Ding
Roger Farr
Mousumi Ghosh
Eric Hansen
Jianxin Ren
Xinxu Shi
Mike MacEwan (PCT)
Gregg Feigelson (CHT)
Sam Tadayon (CET)

Pearl River Kilolab

Jason Brazillo
Steve Hoagland
Ries Hofman
Nisha Yohannan

Lenny Miller
Leo West

George Lamothe
Zygmunt Jedynak
John Zaleski

Analytical Chemistry

Jiu Ai
Dale Roberts
Eric Olsen

Process Safety

Ying Jing
Ralph Zhao

Material Operations

Colin Rothrock